Synthesis and Enhanced Ethanol Gas Sensing Properties of the g-C3N4 Nanosheets-Decorated Tin Oxide Flower-Like Nanorods Composite

نویسندگان

  • Yan Wang
  • Jianliang Cao
  • Cong Qin
  • Bo Zhang
  • Guang Sun
  • Zhanying Zhang
چکیده

Flower-like SnO₂/g-C₃N₄ nanocomposites were synthesized via a facile hydrothermal method by using SnCl₄·5H₂O and urea as the precursor. The structure and morphology of the as-synthesized samples were characterized by using the X-ray powder diffraction (XRD), electron microscopy (FESEM and TEM), and Fourier transform infrared spectrometer (FT-IR) techniques. SnO₂ displays the unique 3D flower-like microstructure assembled with many uniform nanorods with the lengths and diameters of about 400-600 nm and 50-100 nm, respectively. For the SnO₂/g-C₃N₄ composites, SnO₂ flower-like nanorods were coupled by a lamellar structure 2D g-C₃N₄. Gas sensing performance test results indicated that the response of the sensor based on 7 wt. % 2D g-C₃N₄-decorated SnO₂ composite to 500 ppm ethanol vapor was 150 at 340 °C, which was 3.5 times higher than that of the pure flower-like SnO₂ nanorods-based sensor. The gas sensing mechanism of the g-C₃N₄nanosheets-decorated SnO₂ flower-like nanorods was discussed in relation to the heterojunction structure between g-C₃N₄ and SnO₂.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon Nitride Decorated Ball-Flower like Co3O4 Hybrid Composite: Hydrothermal Synthesis and Ethanol Gas Sensing Application

Recently, semiconducting metal oxide (SMO) gas sensors have attracted the attention of researchers for high conductivity, labile features by environment, low cost, easy preparation, etc. However, traditional SMOs have some defects such as higher operating temperature and lower response value, which greatly limit their application in the field of gas sensor. In this work, the carbon nitride deco...

متن کامل

Calcination Method Synthesis of SnO2/g-C3N4 Composites for a High-Performance Ethanol Gas Sensing Application

The SnO₂/g-C₃N₄ composites were synthesized via a facile calcination method by using SnCl₄·5H₂O and urea as the precursor. The structure and morphology of the as-synthesized composites were characterized by the techniques of X-ray diffraction (XRD), the field-emission scanning electron microscopy and transmission electron microscopy (FESEM and TEM), energy dispersive spectrometry (EDS), thermal...

متن کامل

A density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride

Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...

متن کامل

Facile Synthesis of Wormhole-Like Mesoporous Tin Oxide via Evaporation-Induced Self-Assembly and the Enhanced Gas-Sensing Properties

Wormhole-like mesoporous tin oxide was synthesized via a facile evaporation-induced self-assembly (EISA) method, and the gas-sensing properties were evaluated for different target gases. The effect of calcination temperature on gas-sensing properties of mesoporous tin oxide was investigated. The results demonstrate that the mesoporous tin oxide sensor calcined at 400 °C exhibits remarkable sele...

متن کامل

Synthesis of Zinc Oxide Nanostructured Thin Film by Sol- Gel Method and Evaluation of Gas Sensing Properties

Ethanol (C2H6O) sensitivity of zinc oxide (ZnO) thin film has been studied in present work. Semiconductor thin films of zinc oxide (ZnO) were deposited onto alkali-free glass substrates by the sol–gel method and dip-coating technique. The ZnO sol was synthesized by dissolving zinc acetate dehydrate in ethanol, and then adding Tetra ethanol-amine.  The as-coated films were preheated at 150 ºC fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017